Tribhuwan University Institute of Science and Technology 2075

Bachelor Level / First Semester / Science **Computer Science and Information Technology(MTH112)** ((TU CSIT) Mathematics I (Calculus)) Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt any three questions:

1. (a) A function is defined by f(x) = |x|, calculate f(-3), f(4), and sketch the graph.

(b) Prove that the $\lim_{x \to a} \frac{|x-2|}{|x-2|}$ does not exist

2. (a) Find the domain and sketch the graph of the function $f(x) = x^2 - 6x$.

(b) Estimate the area between the curve $y = x^2$ and the lines y = 1 and y = 2.

3. (a) Find the Maclaurin series for cos x and prove that it represents cos x for all x.

(b) Define initial value problem. Solve that initial value problem of y' + 2y = 3, y(0) = 1.

(c) Find the volume of a sphere of a radius a.

 $f(x, y) = \frac{y}{y}$ 4. (a) If $\lim_{x \to y} f(x, y) = \frac{y}{y}$ exist? Justify.

4(b) Calculate for
$$f(x, y) = 100 - 6x^2y$$
 and

Attempt any ten Questions:

5. If
$$f(x) = \sqrt{2-x}$$
 and $g(x) = \sqrt{x}$, find fog and fof.

6. Define continuity on an interval. Show that the function is continuous on the interval [-1,1]. 7. Verify Mean value theorem of $f(x) = x^3 - 3x + 2$ for [-1, 2].

8. Stating with $x_1 = 2$, find the third approximation x_3 to the root of the equation $x^3 - 2x - 5 = 0$.

9. Evaluate
$$\int_{-\infty}^{\infty} x^3 \sqrt{1-x^4} dx$$

10. Find the volume of the resulting solid which is enclosed by the curve y = x and $y = x^2$ is rotated about the x-axis.

converges or diverges.

11. Find the solution of y'' + 4y' + 4 = 0.

$$\sum_{n=1}^{\infty} \frac{n^2}{5n^2+4}$$

12. Determine whether the series

13. If a = (4, 0, 3) and b = (-2, 1, 5) find |a|, the vector a - b and 2a + b.

14. Find and and if z is defined as a function of x and y by the equation $x^3 + y^3 + z^3 + 6xyz = 1$.

Full marks: 80 Pass marks: 32 Time: 3 hours 15. Find the extreme values of the function $f(x, y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$.