Tribhuwan University
 Institute of Science and Technology
 2078

Bachelor Level / Second Semester / Science
Full marks: 60
Computer Science and Information Technology(CSC160)
((TU CSIT) Discrete Structures)
Time: 3 hours
Candidates are required to give their answers in their own words as far as practicable.
The figures in the margin indicate full marks.

Group A

Long answer questions:

Attempt any Two questions:

1. Prove that for all integers x and y, if $x^{2}+y^{2}$ is even then $x+y$ is even. Using induction prove that $1^{3}+2^{3}+$ \qquad $+n^{3}=n^{2}(n+1)^{2} / 4$.
2. State division and remainder algorithm. Suppose that the domain of the propositional function $P(x)$ consists of the integers $0,1,2,3$ and 4. Write out each of following propositions using disjunctions, conjunctions and negations.
a. $\exists x P(x)$
b. $\forall \mathbf{x P}(\mathrm{x})$
c. $\exists \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
d. $\forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})$
e. $\neg \exists x P(x)$
f. $\neg \forall \mathrm{x} P(\mathrm{x})$
3. List the necessary conditions for the graphs to be isomorphic with an example. Find the maximal flow from the node SOURCE to SINL in the following network flow. [5+5]

Group B

Short answer questions:

Attempt any Eight questions:
4. What is the coefficient of x^{7} in $(1+x)^{11}$? Describe how relation can be represented using matrix. [2+3]
5. Solve the recurrence relation $a_{n}=5 n_{n-1}-6 n_{n-2}$ with initial conditions $a_{0}=1, a_{1}=4$.
6. Prove that if \mathbf{n} is positive integer, then \mathbf{n} is odd if and only if $5 n+6$ is odd.
7. Define proposition. Consider the argument "John, a student in this class knows how to write program in C. Everyone who knows how to write program in C can get a high paying job. Therefore, someone in this class can get high paying job." Now, explain which rules of inferences are used for each step.
8. Show that if there are 30 students in a class, then at least two have same names that begin with the same letter. Explain the Pascal's triangle. [2.5+2.5]
9. Illustrate the Dijkstra's Algorithm to find the shortest path from source node to destination node with an example.
10. What are the significances of Minimal Spanning Tree? Describe how Kruskal's algorithm can be used to find the MST.
11. Define zero-one matrix. Explain the types of function. [1+4]
12. Represent any three set operations using Venn diagram. Give a recursive defined function to find the factorial of any given positive integer. [3+2]

